Aberrant sodium influx causes cardiomyopathy and atrial fibrillation in mice

Atrial Fibrillation (AF)

Background

CLINICAL CHARACTERISTICS

Prevalence
- 6% of all Americans >65 years
- 15-20% of all strokes

Clinical Presentation
- Many are asymptomatic
- Palpitations, shortness of breath
- Chest pain, fatigue
- Stroke, HF

Clinical Diagnosis - ECG
- Fast and Irregular heart beat

Management of AF
- Pharmacotherapy
- Ablative therapy
- Bioelectric therapy

1. Lone AF
 - < 60 years old
 - No clinical evidence of cardiopulmonary disease

2. Paroxysmal AF
 - 24 hours to a week

3. Persistent AF
 - Lasting more than a week

4. Permanent AF
 - Chronic
1. Shortening of Atrial Effective Refractory Period (ERP)
 - Enables Reentry wavelets

2. Action Potential Duration (APD) prolongation
 - Early after depolarizations (EADs)
 - Delayed after depolarizations (DADs)
 - Premature beats
Research Objectives

1. Role of persistent Na current
 - Atrial enlargement
 - Dilated Cardiomyopathy
 - Spontaneous AF

2. Mouse model of AF
 - Spontaneous and prolonged AF
1. **Mouse Model**
 - F1759A line engineered with lidocaine resistant SCN5A

2. **Telemetry and ECG**
 - Absence of P waves and irregular RR intervals

3. **Quantitative PCR**
 - Combined expression of mouse and human Scn5A

4. **Immunoblots and Immunofluorescence**
 - Anti-FLAG, anti-Nav1.5, anti-tubulin antibodies

5. **Cellular Electrophysiology**
 - Cells isolated from 2 month mice with AF
 - TTX sensitive persistent Na current

6. **Ca transients**
 - Cells loaded with Fura-2/AM

7. **Echocardiography**
 - Left atrial diameter, LVEDD, LVEF measured

8. **Histology**
 - 10 micron slices examined

9. **Transmission Electron Microscopy**
 - 60 nm slices examined

10. **Epicardial Optical Mapping**
 - 4- to 12 month old F1759A-dTG
 - DF, RI

11. **Statistics**
 - Unpaired 2-tailed t-test
Cardiac specific, FLAG-tagged F1759A-Na$_v$1.5 expressing TG mice

Results

![Diagram showing the expression of F1759A-Na$_v$1.5 in cardiac tissue.](image)

B

<table>
<thead>
<tr>
<th>mRNA EXPRESSION (Normalized NTG)</th>
<th>Ventricle</th>
<th>Atrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse Scn5a</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Mouse Scn5a + human SCN5A</td>
<td>2.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

C

- **Anti-FLAG Ab:**
 - Positive staining
 - Negative staining

- **No anti-FLAG Ab:**
 - Positive staining

D

<table>
<thead>
<tr>
<th>F1759A rtTA</th>
<th>Ventricle</th>
<th>Atrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>F1759A rtTA</th>
<th>Ventricle</th>
<th>Atrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Western Blots

- **FLAG:**
 - Ventricular smear
 - Atrial smear
- **Nav:**
 - Ventricular smear
 - Atrial smear
- **Tubulin:**
 - Ventricular smear
 - Atrial smear
F1759A-Nav1.5 increases persistent Na current in atria and ventricles
Increased Na influx sufficient to cause atrial and ventricular cardiomyopathy

Results
Prolonged QT interval and spontaneous AF in F1759A-dTG mice
Results

Surface optical voltage mapping of AF
Inhibition of NCX attenuates atrial and ventricular arrhythmogenesis in F1759A-dTG mice

Results

[Graphs and diagrams illustrating the effects of inhibition of NCX on atrial and ventricular arrhythmogenesis in F1759A-dTG mice.]
1. **F1759A-dTG mice can produce spontaneous and prolonged episodes of AF (rotors, and waves)**
 - Atrial arrhythmias (short episodes) could only be elicited by aggressive burst pacing in other mouse models
 - KPQ mice, and TG mice lines unable to produce spontaneous or sustained AF episodes

2. **F1759A-dTG mice mimics the structural and functional abnormalities due to persistent Na current**
 - Prolongation and dispersion of APD
 - Increased intracellular Ca, via reverse mode NCX
 - Chamber enlargement, fibrosis, and mitochondrial injury

3. **Inhibiting NCX in reverse mode reduced spontaneous atrial and ventricular arrhythmias**
 - Targets downstream effects of enhanced Na entry
1. **Mouse vs Human model**
 - Mouse has different cardiac ion channel profile compared to humans
 - Higher basal heart rate
What did they do?

Investigate the role of persistent Na current on structural and EP perturbations leading to AF in mice.

What did they find?

Incomplete Na channel inactivation results in:
- Atrial and ventricular enlargement
- Myofibril disarray
- Fibrosis and mitochondrial injury
- EP dysfunction
- Spontaneous and prolonged AF

What’s next?

- F1759A-dTG mice model for studying arrhythmia mechanisms

What does it mean?

- **Persistent Na current** can explain AF mechanisms (rotors, wavelets)
- **Inhibition of NCX** could be a target for AF therapy