Fibrosis, Connexin-43, and Conduction Abnormalities in the Brugada Syndrome

Brugada Syndrome

1. **Cardiac Arrhythmia with a distinct ECG pattern**
 - Prolonged PR interval
 - Right Bundle Branch Block (RBBB)
 - ST segment elevation
 - Negative T wave

2. **Hereditary Disorder**
 - Autosomal Dominant

3. **Idiopathic**
 - No evidence of structural disease

CLINICAL CHARACTERISTICS

Prevalence
- 4% of all SD
- 20% of all idiopathic SD
- Estimated at 1 in 2000
- Family history in 20-30%
- Common in South Asia

Clinical Presentation
- Syncope
- Resuscitated SD due to VT/VF
- 80% of adults patients are males
- Many are asymptomatic

Clinical Diagnosis - ECG
- J wave >= 2mm
- Negative T wave
- Coved type ST-T configuration
- Gradually descending ST segment

Management of Brugada Syndrome
- Implantation of ICD
What causes Brugada Syndrome?

1. Depolarization Theory

2. Repolarization Theory

3. Development Abnormality
JACC paper

Depolarization Theory

1. Fibrosis in the RVOT
 - Atrial enlargement
 - Dilated Cardiomyopathy
 - Spontaneous AF

2. Altered Cx43 Expression
 - Spontaneous and prolonged AF
1. **Study setting and cohorts**

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex</th>
<th>Age (yrs)</th>
<th>Index Presentation</th>
<th>Clinical Abnormality</th>
<th>Cardiac Morphology</th>
<th>Relatives Evaluated</th>
<th>Relatives Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>M</td>
<td>15</td>
<td>SCD in sleep</td>
<td>Diagnosis in relative</td>
<td>Normal</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B2</td>
<td>M</td>
<td>18</td>
<td>SCD in sleep</td>
<td>Diagnosis in relative</td>
<td>Normal</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>B3</td>
<td>M</td>
<td>19</td>
<td>SCD in sleep</td>
<td>Diagnosis in relative</td>
<td>Normal</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>B4</td>
<td>M</td>
<td>23</td>
<td>SCD with exercise</td>
<td>Diagnosis in relative</td>
<td>Right coronary artery (RCA)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>B5</td>
<td>M</td>
<td>24</td>
<td>SCD in sleep</td>
<td>Diagnosis in relative</td>
<td>Atrial septal defect</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>B6</td>
<td>M</td>
<td>40</td>
<td>SCD with minimal activity</td>
<td>Diagnosis in relative</td>
<td>Normal</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Post-mortem control cohort:
- C1: M 17, RTA, None, Normal
- C2: M 18, RTA, None, Normal
- C3: M 22, Suicide, None, Normal
- C4: M 22, RTA, None, Normal
- C5: M 22, RTA, None, Normal
- C6: M 37, Homicide, None, Normal

In vivo BrS cohort:
- V1: M 48, Multiple syncope, Spontaneous type 1 ECG, Normal
- V2: M 28, Multiple syncope, Asystole-provoked type 1 ECG, Normal
- V3: M 59, VF arrest, Spontaneous type 1 ECG, Normal
- V4: M 29, VF arrest with fever, Spontaneous type 1 ECG, Normal
- V5: M 47, Syncope, Spontaneous type 1 ECG, Normal
- V6: M 27, Multiple syncope, Spontaneous type 1 ECG, Normal

2. **Mutation Analysis**
- SCN5A mutation analysis for in vivo BrS subjects

3. **Specialist Cardiac post-mortem examination**
- Histological examination of tissue sections

4. **Detailed post-mortem RVOT examination**
- Morphometric analysis for collagen/fibrosis
- Confocal microscopy of Cx43 distribution
5 **In vivo open thoracotomy mapping and ablation of RVOT**
- Epicardial RF ablation at sites of late and fractionated EGMs

6 **Biopsy of in vivo substrate sites in RVOT**
- Epicardial samples from sites with abnormal EGMs

7 **Clinical Endpoints**
- Ajmaline test at 6 months

8 **Statistical Analysis**
- Simple and multiple regression analysis
Right precordial ECG Traces from blood relatives of postmortem BrS cases during Ajmaline provocation
Results

RVOT Histological Sections Stained for Collagen and Immunoconfocal images of Cx43 expression

<table>
<thead>
<tr>
<th>Epicardium</th>
<th>Epicardial Fat Layer</th>
<th>Epicardial Myocardium</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>B1</td>
<td>C1</td>
</tr>
<tr>
<td>Interstitial Collagen</td>
<td>Replacement Collagen</td>
<td>Longitudinal Connexin43</td>
</tr>
<tr>
<td>A2</td>
<td>B2</td>
<td>A4</td>
</tr>
<tr>
<td>Enface Connexin43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>B5</td>
<td></td>
</tr>
</tbody>
</table>
Results

Scatterplot of Collagen and Cx43 in RVOT epicardium

Table 2: Univariable and Multivariate Regression Analysis of Proportional Collagen Content, as Evaluated by Morphometric Analysis of PSR Staining in BrS Cases Versus Control Hearts

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariable Analysis</th>
<th>Multivariate Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>p Value</td>
</tr>
<tr>
<td>Disease</td>
<td>1.42 (1.06-1.90)</td>
<td>0.024</td>
</tr>
<tr>
<td>RV</td>
<td>1.66 (1.11-2.50)</td>
<td>0.019</td>
</tr>
<tr>
<td>RVOT</td>
<td>1.98 (1.34-2.91)</td>
<td>0.003</td>
</tr>
<tr>
<td>Endo</td>
<td>1.00 N/A</td>
<td>1.00 N/A</td>
</tr>
<tr>
<td>Mid</td>
<td>1.27 (1.02-1.58)</td>
<td>0.033</td>
</tr>
<tr>
<td>Epi</td>
<td>2.00 (1.46-2.73)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

BrS = Brugada syndrome; CI = confidence interval; Endo = endocardium; Epi = epicardium; LV = left ventricle; Mid = mid-myocardium; OR = odds ratio; PSR = picrosirius red; RV = right ventricle; RVOT = right ventricular outflow tract.

Table 3: Multivariable Regression Analysis of Proportional Connexin43 Content in BrS Post-Mortem Cases Versus Control Hearts

<table>
<thead>
<tr>
<th>Variable</th>
<th>BrS vs. Control Hearts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
<td>0.59 (0.44-0.79)</td>
</tr>
<tr>
<td>Endocardium</td>
<td>1.00</td>
</tr>
<tr>
<td>Mid-myocardium</td>
<td>0.97 (0.64-1.49)</td>
</tr>
<tr>
<td>Epicardium</td>
<td>1.16 (0.76-1.78)</td>
</tr>
<tr>
<td>Disease (corrected for collagen)</td>
<td>0.58 (0.36-0.96)</td>
</tr>
</tbody>
</table>

Expression according to zone and after correction for collagen content is also shown. Abbreviations as in Table 2.
1. Increased levels of myocardial fibrosis
 - Increased collagen content in all ventricular walls
 - Fibrosis both epicardial and intramyocardial noted in the RVOT associated with late potentials
 - Fibrosis in all cases of BrS, whether they harbored SCN5A mutation or not

2. Cx43 expression diminished in BrS compared with control
 - Changes at the intercalated discs may cause electrical uncoupling and reported in mice model

3. Epicardial ablation at sites of late potentials in RVOT terminated BrS with type-I ECG
 - Suppression of VT/VF episodes due to open thoracotomy catheter ablation

4. Depolarization vs Repolarization theory for BrS pathogenesis
 - Conduction delay in RVOT in BrS in vivo reinforced by other human studies
 - Correlation between conduction delay and fibrosis (histopathology), fragmented electrograms
1. Biased Population
 - Symptomatic BrS cases

2. Etiology of death in post-mortem cases
 - No previous ECG evidence
 - Diagnosis based on BrS in blood relatives
<table>
<thead>
<tr>
<th>What did they do?</th>
<th>What did they find?</th>
</tr>
</thead>
</table>
| Investigated substrate (collagen, fibrosis, Cx43) underlying BrS at post-mortem, and in vivo | - BrS associated with **increased collagen, fibrosis and reduced Cx43 expression** in the RVOT
- Myocardial abnormal potentials collocate with fibrosis in RVOT |

<table>
<thead>
<tr>
<th>What’s next?</th>
<th>What does it mean?</th>
</tr>
</thead>
</table>
| - Quantification of fibrosis and gap junction proteins for risk stratification
- Identify predictors and determinants of the structural abnormalities | - **Depolarization theory** is the likely pathogenesis path of BrS
- Ablation in RVOT can reverse BrS ECG signature |